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A FULLY NONLINEAR EQUATION ON
FOUR-MANIFOLDS WITH POSITIVE SCALAR
CURVATURE

MATTHEW J. GURSKY & JEFF A. VIACLOVSKY

Abstract

We present a conformal deformation involving a fully nonlinear equation in
dimension 4, starting with a metric of positive scalar curvature. Assuming a
certain conformal invariant is positive, one may deform from positive scalar
curvature to a stronger condition involving the Ricci tensor. A special case of
this deformation provides an alternative proof to the main result in Chang,
Gursky & Yang, 2002. We also give a new conformally invariant condition
for positivity of the Paneitz operator, generalizing the results in Gursky,
1999. From the existence results in Chang & Yang, 1995, this allows us
to give many new examples of manifolds admitting metrics with constant
Q-curvature.

1. Introduction

Let (M, g) denote a closed, 4-dimensional Riemannian manifold, and
let Y[g] denote the Yamabe invariant of the conformal class [g]:

(1.1) Y[g] = inf Vol (§)~/? / Rgdvolg,
gelgl M

where Ry denotes the scalar curvature. Another important conformal
invariant is

(1.2) Fa(lg) = /M (—; | Ric,|> + éRE) dvoly,

The first author was partially supported by NSF Grants DMS-0200646 and INT-
0229457. The second author was partially supported by NSF Grant DMS-0202477.
Received 01/31/2003.

131



132 M.J. GURSKY & J.A. VIACLOVSKY

where Ricy is the Ricci tensor. By the Chern-Gauss-Bonnet formula

([4]),
(1.3) 82y (M) = /M [W,|2dvol, + Fa([g]).

Thus, the conformal invariance of F» follows from the well-known (point-
wise) conformal invariance of the Weyl tensor Wy (see [13]).
Define the tensor
1o, t
(1.4) Al = 5(Rlcg - 6Rgg).
Note that for ¢t = 1, A; is the classical Schouten tensor ([13]). Let
Jg(gilAtg) denote the second elementary symmetric function of the

eigenvalues of g_lAf], viewed as an endomorphism of the tangent bundle.
Then a simple calculation gives

(1.5) Fallg)) = 4 /M oa(g~ AL dvoll,.

Our main result is the following;:

Theorem 1.1. Let (M, g) be a closed 4-dimensional Riemannian
manifold with positive scalar curvature. If

(16) Fallg)) + 51— )2 ~ 1) (¥ [g])? > 0.

for some tg < 1, then there exists a conformal metric g = e~2%g with
Rz >0 and GQ(A%()) > 0 pointwise. This implies the pointwise inequali-
ties

(1.7) (to — 1)Rsg < 2Ric; < (2 — to) Ryg.

As applications of Theorem 1.1, we consider two different values of
to. When ty = 1, we obtain a different proof of the following result in
[8]:

Corollary 1.1. Let (M,g) be a closed 4-dimensional Riemannian
manifold with positive scalar curvature. If Fa([g]) > 0, then there ex-
ists a conformal metric § = e *“g with Rz > 0 and Ug(ﬁflAé) > 0
pointwise. In particular, the Ricci curvature of g satisfies

0 < 2Ricy < Rzg.
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The proof in [8] involved regularization by a fourth-order equation
and relied on some delicate integral estimates. By contrast, the proof
of Theorem 1.1 seems more direct, and depends on general a priori
estimates for fully nonlinear equations developed in [30], [20], [27], and
[23].

Our second application is to the spectral properties of a conformally
invariant differential operator known as the Paneitz operator. Let §
denote the L?-adjoint of the exterior derivative d; then the Paneitz
operator is defined by

(1.8) Po =A%+ 5(§Rgg _9 Ricg> do.

The Paneitz operator is conformally invariant, in the sense that if g =
e 2%g, then

(1.9) Py =e'p,.

Since the volume form of the conformal metric g is dvol; = e~ 1dvol,,
an immediate consequence of (1.9) is the conformal invariance of the
Dirichlet energy

(P30, O)2(arg) = (Pg®s &) 12(0g)-

In particular, positivity of the Paneitz operator is a conformally invari-
ant property, and clearly the kernel is invariant as well.

To appreciate the geometric significance of the Paneitz operator we
need to define the associated @Q-curvature, introduced by Branson:

1 -
(1.10) Qg = — 5 ARy +203(g LA}).

Under a conformal change of metric § = e~2“g, the Q-curvature trans-
forms according to the equation

(1.11) —Pu+2Q, = 2Qge™*,

see, for example, [5]. Note that

(112) | Quivol, = 5 7(la).

so the integral of the Q-curvature is conformally invariant.
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The @Q-curvature and Paneitz operator have become important ob-
jects of study in the geometry of four-manifolds, and play a role in such
diverse topics as Moser-Trudinger inequalities ([3], [6]), compactifica-
tion of complete conformally flat manifolds ([9]), twistor theory ([11]),
gauge choices for Maxwell’s equations ([12]), and most recently in the
study of conformally compact AHE manifolds ([15], [18]).

Our interest here is in the spectral properties of the Paneitz oper-
ator and the related question of the existence of metrics with constant
@Q-curvature. The most general work on this subject was done by Chang
and Yang [10], who studied the problem of constructing conformal met-
rics with constant ()-curvature by variational methods. They considered
the functional

(1.13)
Flg] = (Pyo, ¢) — 4/ Q¢dvol — </ deol> log/ e 4 dvol,
M M M

and analyzed the behavior of a minimizing sequence. Of course, it is not
clear a priori that F' is even bounded from below. Indeed, if the Paneitz
operator has a negative eigenvalue and the conformal invariant (1.12)
is positive, then Chang and Yang showed that inf F' = —oco (see [10], p.
177). For example, take a compact surface X of curvature —1 with first
eigenvalue A\;(—A) << 1. Then the product manifold M =¥ x ¥ will
have A1 (P) < 0 and [ Qdvol > 0.

Chang and Yang also pointed out the connection between the con-
formal invariant (1.12) and the best constant in the inequality of Adams
[1], another key point for establishing the W22 compactness of a mini-
mizing sequence. Combining these observations, they proved:

Theorem 1.2 ([10]). Let (M, g) be a compact 4-manifold. Assume:
(i) The Paneitz operator Py is nonnegative with Ker P= {constants}.

(ii) The conformal invariant (1.12) is strictly less than the value at-
tained by the round sphere.

Then there exists a minimizer of F, which satisfies (1.11) with Qg =
constant.

Subsequently, the first author proved that any four-manifold of pos-
itive scalar curvature which is not conformally equivalent to the sphere
already satisfies the second assumption of Chang-Yang. In addition:
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Theorem 1.3 ([21]). Let (M,g) be a compact 4-manifold. If the
scalar curvature of g is nonnegative and [ Qdvol > 0, then the Paneitz
operator is positive and Ker P = {constants}.

Because of the example of Chang-Yang, it is clear that one cannot
relax the condition on the scalar curvature in the above theorem. On
the other hand, the positivity of the conformal invariant (1.12) is a
rather strong assumption. For example, if the scalar curvature is strictly
positive, then the positivity of (1.12) implies the vanishing of the first
Betti number of M (see [22]). Thus, for example, the manifold N#(S* x
53) can not admit a metric of positive scalar curvature with [ Qdvol >
0.

It is interesting to note that the positivity of the Paneitz operator
was studied by Eastwood and Singer in [11] for reasons motivated by
twistor theory. They constructed metrics on k(S3x St) for all k > 0 with
P >0 and Ker P = {constants}. Since these manifolds have [ Qdvol <
0, the Eastwood-Singer construction is in some respects complementary
to the result of [21].

By combining Theorem 1.1 with {5 = 0, and an integration by parts
argument, we obtain a new criterion for the positivity of P:

Theorem 1.4. Let (M, g) be a closed 4-dimensional Riemannian
manifold with positive scalar curvature. If

(1.14) / Q,dvol, + %(Y[g])Q >0,

then the Paneitz operator is nonnegative, and Ker P = {constants}.
Therefore, by the results in [10], there ezists a conformal metric g =
e~ 2%g with ()7 = constant.

Since Theorem 1.4 allows the integral of the Q)-curvature to be neg-
ative, we are able to use surgery techniques to construct many new
examples of manifolds which admit metrics with constant (). For ex-
ample, we will show that

N = (5% x S%)#k(S' x §3), k <5,
N = CP?#k(S! x §3), k <5,

N = CP*#k(RP?), k <8,

N = k(S x S #I(RPY), 2k +1 <9,

all admit metrics with constant (). See Section 7 for additional exam-
ples.

135



136 M.J. GURSKY & J.A. VIACLOVSKY

For the proof of Theorem 1.1, we will be concerned with the following

equation for a conformal metric § = e~ 2%g:

(1.15) oy 2 (g7 AL) = f(x)e™,

where f(z) > 0. We have the following formula for the transformation

of A' under a conformal change of metric g = e~ 2?%g:

1—t 2—1
(1.16) AL = AL +Viu+ 5 (Au)g + du @ du — T|Vu|2g.

Since A' = Al + L5ttr(Al)g, this formula follows easily from the stan-
dard formula for the transformation of the Schouten tensor (see [30]):

1
(1.17) A%]:A;—i-vgu%—du@du— §|Vu|29.

Using (1.16), we may write (1.15) with respect to the background metric
)

1—
(1.18) 05/2 <g_1 (V2u + Tt(Au)g

2t .
— 2|Vu\29+du®du+Ag>> = f(z)e*™.

The choice of the right-hand side in (1.18) is quite flexible; the key
requirement is simply that the exponent is a positive multiple of u. For
negative exponents we lose the invertibility of the linearized equation
and some key a priori estimates; see the proofs of Propositions 2.2
and 3.1.

Equation (1.18) was considered in our earlier work ([23]) in the con-
text of negative curvature. Li and Li ([27]) used a similar path to
prove existence of solutions of the conformally invariant equation in-
volving more general symmetric functions of the eigenvalues, assuming
the manifold is locally conformally flat. After completing this paper,
we also received the preprint of Guan, Lin and Wang ([19]), where they
used a similar deformation technique to obtain various results in the
locally conformally flat setting.

We will use the continuity method: the assumption of positive scalar
curvature will allow us to start at some t = § very negative. We will
then use the conformally invariant assumption (1.6) in Section 3, to-
gether with the Harnack inequality of [20] and [27] in Section 4, to
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prove compactness of the space of solutions. Existence of a solution at
time ¢y and verification of the inequalities (1.7) will be proved in Sec-
tion 5, thus completing the proof of Theorem 1.1. Theorem 1.4 will be
proved in Section 6, and in Section 7 we give many new examples of
manifolds admitting metrics with constant Q)-curvature.

2. Ellipticity
In this section we will discuss the ellipticity properties of Equation
(1.18).

Definition 1. Let (\1,...,)\s) € R%. We view the second elemen-
tary symmetric function as a function on R*:

(2.1) oa(Ms ) = DA,
i<j

and we define

(2.2) Iy = {02 > 0} N {01 > 0},

where 01 = A1 + - - - + A4 denotes the trace.

For a symmetric linear transformation A : V. — V. where V is
an n-dimensional inner product space, the notation A € I‘2+ will mean
that the eigenvalues of A lie in the corresponding set. We note that
this notation also makes sense for a symmetric tensor on a Riemannian

manifold. If A € TF, let 02/2(A) = {o9(A)}V/2.

Definition 2. Let A : V — V be a symmetric linear transforma-
tion, where V' is an n-dimensional inner product space. The first Newton
transformation associated with A is

(2.3) Ti(A) =01(A)- I — A
Also, for t € R we define the linear transformation

(2.4) LYA) =Ty (A) + L=t

o1(Th(A)) - I.
We note that if A; : R — Hom(V, V), then

(25) 70'2 ZTl s Z]d s)iju

that is, the first Newton transformation is what arises from differentia-
tion of os.
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Proposition 2.1.
(i) The set 'y is an open conver cone with vertex at the origin.

(ii) If the eigenvalues of A are in T'y, then Ti(A) is positive definite.
Consequently, for t <1, L'(A) is also positive definite.

(iii) For symmetric linear transformations A € I'y, B € T, and s €
[0, 1], we have the following inequality
(26)  {oa((1—s)A+sB)}? > (1= 5){oa(A)}'/* + s{o2(B)}'/*.

Proof. The proof of this proposition is standard, and may be found
in [7] and [16]. q.e.d.

For u € C?(M), we define
(2.7) A, =A,+V u+T(Au)g+du®du—?|VU| g.
Proposition 2.2. Let u € C?(M) be a solution of

(2.8) oy 2 (g7 AL) = f(x)e,

for some t < 1 with Al € F;“. Then the linearized operator at u,
L C%?(M) — CY(M), is invertible (0 < a < 1).

Proof. We define
Ft['xv U, vua V2U] = 02(9_1‘42) - f($)2e4u7
so that solutions of (2.8) are zeroes of F;. We then suppose that u €

C%(M) satisfies Fy[x,u, Vu,V?u] = 0, with Al € T'J. Define us; =
U + s, then

d
2. ¢ = —F S S 2 S
( 9) ‘C((p) ds t[m,u,Vu ’vu]s:O
_ d —1 4t d 2 4dus
N £<02(g A“S)Ms:o ds (F7e™) s=0

From (2.5), we have (using the summation convention)

d

(™ A)] = A (107 4|,

s=
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We compute

G [

_ 1-—t¢
=g 1(V2<p + T(Ag))g — (2 = t){du,dp)g + 2du ® dgo).

Therefore,
(2.10)
d —1 gt _ “1ty. f —1(2
(oatg7al))| =T A {g 7 (Ve + (- 0(A0)(9/2)
— (2 —=t)(du,dp)g + 2du @ dgp) }
ij
For the second term on the right-hand side of (2.9) we have

i 2 4dug _ 2 _4u
(2.11) T (f2e*™) L:O =4f%e™p.

Combining (2.10) and (2.11), we conclude

(2.12)
LYp) =Ti(g™ AL i{g ™ (V2o + (1 = 1) (Ap)(9/2)) }i — 4% + - --

where + - - - denotes additional terms which are linear in V. Using the
definition of L! in (2.4), we can rewrite the leading term of (2.12) and
obtain

(2.13) Lp) =L (g AL)ij (g7 V2 p)i; — Af2eM o + - -

For t < 1, Proposition 2.1 implies that L!(g~!A?) is positive definite,
so L is elliptic. Since the coefficient of ¢ in the zeroth-order term of
(2.13) is strictly negative, the lineariztion is furthermore invertible on
the stated Holder spaces (see [17]). q.e.d.

3. CY estimate

Throughout the sequel, (M, g) will be a closed 4-dimensional Rie-
mannian manifold with positive scalar curvature. Since R, > 0, there
exists 6 > —oo so that Ag is positive definite. For ¢ € [4, 1], consider the
path of equations

(3.1) oy 2 (g7 AL = fla)e,

where f(z) = U;/z(g_lAg) > 0. Note that u = 0 is a solution of (3.1)
for t =4.
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Proposition 3.1. Let u; € C?(M) be a solution of (3.1) for some
§ <t<1. Then u; <6, where § depends only upon g.

Proof. From Newton’s inequality %U%/ 2 < o1, SO
4
V6

Let p be a maximum of u;, then the gradient terms vanish at p, and
Au <0, so by (1.16)

(3.2) f(@)e®™ < o1(g7 A}).

Since t > 6, this implies u; < 6. q.e.d.
Proposition 3.2. Assume that for some § <t <1,
1
(3.3) Falgh) + (A= 1)(2 - H(Y[g))* = A > 0.

If uy € C*(M) is a solution of (3.1) satisfying ||Vui| =~ < Ci, then
up > 6, where § depends only upon g, C1, and log ;.

Proof. Using Lemma 24 in [30], we have

o2 (A" = o9 <A1 + %JﬂAUg)

— (AN + 31 (a2 ¢ 6(%01(/&1))2
= o9(AY) + ;(1 —1)(2 — t)or (A1)

Letting g = e~ 2g,
u - - 3 - 2
e f2 = 03(g7IA,) = oo A) + (1= D)2 =) (o197 Ay,))

= (oG Al + 2714(1 —H2- ).
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Integrating this, we obtain

C’ / el dvol,
M

2/ fZetutdvol,
M
~ 1
_ / o2 (G AL e edvoly + (1 - 1)(2 — 1) / R2e~ 1t dyol,
M 24 v Y

1
= 7 AN dvol: + —(1— ¢ 2—75/ 2 dvol
/MUQ(Q ) v0g+24( )(2—1) MRg volg,

where C’ > 0 is chosen so that f? < C'.

Lemma 3.1. For any metric g’ € [g], we have

(3.4) /M RZ dvoly > (Y[g])>.

Proof. From Holder’s inequality,

1/2
1/2
(3.5) /M Ry dvoly < {/M Rgldvolg/} ~{Vol(¢')} /2.

Since g has positive scalar curvature, Y[g] > 0, so the left-hand side of
(3.5) must be positive. We then obtain

2
(Y[g])2 S (VOI (g’)—l/Q /M Rg/dVOIg/> S /M Rz’dVOIQ"

q.e.d.

Using the lemma, and the conformal invariance of F>, we obtain

(3.6)

/ 4 1 1 2 1

o' [ etmavol, > LR (g + S (1 - )2 - H(Y[g)? = 2x > 0.
u 4 24 4
This implies
1

(3.7) max u; > 1 log \r — C(g).
The assumption |Vu;| < C7 implies the Harnack inequality

(3.8) max uy < minwu; + C(C4,9),

141
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by simply integrating along a geodesic connecting points at which u; at-
tains its maximum and minimum. Combining (3.7) and (3.8) we obtain

1
min u; > 1 log A+ — C.

4. Harnack inequality

We next have the following C! estimate for solutions of Equation
(1.18).

Proposition 4.1.  Let u; be a C? solution of (3.1) for some § <
t <1, satisfying uy < 8. Then ||Vug||p < C1, where Cy depends only
upon 0 and g.

Remark. A Harnack inequality was proved for the conformally
invariant equation for ¢ = 1 in [20], and then extended to ¢ < 1 in [27].
More specifically, in [27] was considered the equation

(4.1) o F(sAY + (1 = s)o1(AY)g) = f(z)e 2™,

The left-hand side is just a reparametrization of A!, but (3.1) has a
different right-hand side, so the Harnack inequality now depends on
the sup. The differences are minor, but for convenience, we present an
outline of the proof here, and also provide a simple direct proof which
works for ¢t < 1.

Proof. Consider the function h = |Vu|? (we will omit the subscript
on uy). Since M is compact, and h is continuous, we suppose the maxi-
mum of A occurs and a point p € N. Take a normal coordinate system
(z%,...,2™) at p, then g;;(p) = &;j, and F;k(p) = 0, where g = g;jdx'da?,
and I’é.k, is the Christoffel symbol (see [4]).

Locally, we may write h as

(4.2) h = g™ ugy,.
In a neighborhood of p, differentiating h in the 2’ direction we have

(4.3) O;h = h; = 0; (glmulum) = ai(glm)ulum + lemai(ul)um.
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Since in a normal coordinate system, the first derivatives of the metric
vanish at p, and since p is a maximum for h, evaluating (4.3) at p, we
have

(4.4) uu; = 0.

Next we differentiate (4.3) in the 27 direction. Since p is a maximum,
0;0;h = h;j is negative semidefinite, and we get (at p)

1
(4.5) 0> h;j = iajaiglmulum + U iup + ugug;-
We recall from Section 2 that

1—1t
(4.6) Ll =Ty + — > Tudi;,
l

is positive definite, where T;; means (T1(g 1 A%));;. We sum with (4.5)
with Lﬁj to obtain the inequality

1
(4.7) 0> §L§j8i8jglmulum + Lﬁjulijul + nguliulj.

We next differentiate Equation (3.1) in order to replace the w;;; term
with lower order terms. With respect to our local coordinate system,
from (2.7) we have

1t
(4.8) (AL)ij = (A))ij + uij — u,T; + —~5 D (ure — wThy)gij + wiuy

k
2—1t
- T(gnmuﬁum)glﬁ‘
At the point p, this simplifies to
(4.9)
: ¢ 1—t 2—t 9
(Au)ij = (Ag)ij + uij + 72 Z(ukk)gij + uju; — 72 (]Vu\ )(51']‘.
k

Next we take m with 1 < m < n, and differentiate (3.1) with respect
to ™ in our local coordinate system:

(4.10) O {72(9" (AL)5) } = Om( ()%™,
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Differentiating and evaluating at p, we obtain

(4.11) T, <am(A;)ij + Uijm — UrOm L

1-—t¢
+ T Z(ukkm — urﬁmfzk)éij + 2uimuj)
k

= (O )™ + A2 .

Note that the third order terms in the above expression are
1—t
T;j <uijm + 5 Z ukkm5ij> = nguijm-
k
Next we sum (4.11) with w,,, using (4.4) we have the following formula
(4.12) Lijumtijm + Ty <um3m(z4§)z’j
— U Uy O F’f-fiz:(u U O L'pe ) 0ij
mUrtmld ;4 9 - rmYmt kk)%)
= U (O f2) e + 42| Vu?.
Substituting (4.12) into (4.7), we arrive at the inequality

1
0> L1400, uun + T, ( — O (AL

1-t¢
+ U O L7 + 5 zk:(uTumamF};k)(S,;j>

+ U (O f2) ™ + Lﬁjuliulj.

Using (4.6) and Lemma 2 in [31], we obtain

1-—1¢
(4.13) 0>Ty <T Z Ritkomuitmdij + RijmUitm — Umam(Ag)ij)
%
1-—1¢
+ U (O f2) ™ + Tyjugiugy + — Z Thugjugg,
1

where R;j;,, are the components of the Riemann curvature tensor of g.

Lemma 4.1. There exists a constant > 0 such that fort € [0,1],

1—1¢
(4.14) T juiugy + —5 zz: Tyuijui; > B Zl: Ty|Vul*.
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Remark. This was proved in [27], using the result in [20].

Using the lemma, we have

1—1¢
(4.15) 0> T (2 Z Rigemuiumdij + Ripjmuitim, — umam(AZ)ij>
3

+ i (O f2)e™ + B Ty Vul*,
l

Since we are assuming u is bounded above, the |Vu]4 term dominates,
and the proof proceeds as in [20] or [27]. q.e.d.

Remark. For convenience, we would like to present here a simpli-
fied proof of Lemma 4.1 which works for ¢ < 1. Although the argument
breaks down as t — 1, it covers the case tg = 0, and therefore suffices
for proving Theorem 1.4.

To begin, we claim that if 3, > 0 is sufficiently small, then for at
least one g, Uiy, > 31 Vul?®. If not, then uy; < B)|Vul? for i = 1...4.
Since I'y C {01 > 0},

Au+2(1 —t)(Au) — 2(2 — )| Vul* + [Vul* + o1 (4) > 0.

Without loss of generality, we may assume that oy (Ag) < €|Vul?, we
then have

(1 21— t))Au + (1 — 902 - t)) IVul? + e[ Vul? > 0.
From the assumption, Au = Y uy; < 48/ Vul|?, so
45;(1 21— t)) IVul? + (1 _2(2 - t)) IVul? + €| Vul? > 0,
which is a contradiction for € and ] sufficiently small. We then have

1—1¢ 1—1t
(4.16) Tijuiug; + — ZTlluijuij > 5 Z Tuu?oio
] ]

v

1-t¢
— <ﬁ£>2§leu|w|4,

so choose 3; = %(ﬁl{)Q This completes the proof.
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5. Proof of Theorem 1.1

Proposition 5.1.  Let u; be a C* solution of (3.1) for some & <
t <1 satisfying 0 < uy < 9, and |Vug||pe < Cy. Then for 0 < a <1,
lut]|c2.a < Co, where Cy depends only upon 6,0,C1, and g.

Proof. The C? estimate follows from the global estimates in [23], or
the local estimates [20] and [27]. We remark that the main fact used
in deriving these estimates is that a;/ 2(At) is a concave function of
the second derivative variables, which follows easily from the inequality
(2.6). Since f(z) > 0, the C? estimate implies uniform ellipticity, and
the C*% estimate then follows from the work of [25] and [14] on concave,

uniformly elliptic equations. q.e.d.

To finish the proof of Theorem 1.1, we use the continuity method.
Recall that we are considering the 1-parameter family of equations, for
te [5a tO]a

(5.1) oy 2 (g AL) = fla)e,

with f(x) = 0;/2(9*1142) > 0, and 0 was chosen so that Ag is positive
definite. We define

S = {t € [4,t] | 3 asolution u, € C**(M) of (5.1) with A}, € I'J}.

The function f(x) was chosen so that u = 0 is a solution at ¢ = d. Since
Ag is positive definite, and the positive cone is clearly contained in F2+,
S is nonempty. Let t € S, and u; be any solution. From Proposition 2.2,
the linearized operator at u;, £ : C*%(M) — C%(M), is invertible. The
implicit function theorem (see [17]) implies that S is open. Note that
since f € C®(M), it follows from classical elliptic regularity theory
that u; € C°°(M). Proposition 3.1 implies a uniform upper bound on
solutions u; (independent of ¢). We may then apply Proposition 4.1
to obtain a uniform gradient bound, and Lemma 3.2 then implies a
uniform lower bound on wu;. Proposition 5.1 then implies that S is
closed, therefore S = [6,t9]. The metric § = e 2"“og then satisfies
O'Q(A»tgo) > (0 and Rg > 0.

We next verify the inequalities (1.7). We decompose A into its
trace-free and pure-trace components,

1 1
(5.2) Al = A" - Eal(At)g + ﬁUl(At)g

= At + l0'1(At)g.
n
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We now associate to A’ the symmetric transformation :47, defined by
— °o 1
(5.3) At = — A + —g1(AY)g.
n
That is, Al is the (unique) symmetric transformation which has the same
pure-trace component as A, but the opposite trace-free component.
Lemma 5.1. The tensors Al and At satisfy the equalities
(5.4) o1 (AN = o1 (A1),
(5.5) oo (AD) = oo AD).
Proof. The proof of (5.4) is immediate from the definition of At To
prove (5.5), we use the identity
1 1
oa(A') = — 3 |AP + Sor(A)?
1,° 1 1
_ _ - At - At 2 - At 2.
2| + n01( )gl” + 201( )
Since the decomposition (5.2) is orthogonal with respect to the norm

|- |2, we conclude

1 — 1 -
02(A") = =5 | = AP + So1(A)? = 0x(A1).
Combining Lemma 5.1 and Proposition 2.1 we have:
Proposition 5.2. If the eigenvalues of At are in T, then
(5.6) — A"+ 01(ANg > 0, and

n—2

(5.7) At + o1(AYg > 0.

Proof. The tensor in (5.6) is simply the first Newton transformation
of A, which is positive definite by Proposition 2.1. By Lemma 5.1,
o2(AY) > 0 and o1(A?) > 0. Thus, the eigenvalues of A are also in

F; By Proposition 2.1, the first Newton tranform Tl(;l\t) is positive
definite. By definition,

Ty (A = — Al + 0 (Al)g
° 1
- _ <—At + nal(At)g> + Ul(At)g

(n—2)

=A'+ o1(A")g. q.e.d.

147
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When expressed in terms of Ric and n = 4, (5.6) and (5.7) are
exactly (1.7).

6. Proof of Theorem 1.4

The assumption (1.14) corresponds to tg = 0 in Theorem 1.1. From
(1.7) we find a conformal metric (which for simplicity, we again denote
by g) with Ric, < Ryg. Theorem 1.4 then follows from:

Proposition 6.1. If Ricy < Ryg, then P > 0, and Ker P =
{constants}.

Proof. We again recall that the Paneitz operator is defined by
2 2 :
(6.1) Pp= A2+ 5(§Rgg _ 2Rlcg) do.
Integrating by parts,
2 .
(6.2) (Po,d)r2 = /M ((A¢)2 + gRg\V¢|2 — 2Ric4(Vo, Vqﬁ)) dvoly.
From the Bochner formula,
(6.3) 0= / (V29> + Ric 4(Vg, Vo) — (Ap)?) dvoly.

Substituting (6.3) into (6.2), we have

(P, <z> 12
( % (Agb) + R .| Vo[? — 2Ric ,(V, w)) dvol,
< é f\V2¢’2 4 R |V¢‘2 _ —R1c ¢(Vo, V¢)> dvoly

_ ( V26 + 2(Ryg — Ric )(m%)) dvol,

2/ 7|V2¢]2dvolg,
M3

where V2¢ = V2¢ — (1/4)(A¢)g. Consequently, P > 0. Assume by

contradiction that P¢ = 0, and ¢ is not constant. From the above, we
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conclude that V2¢ = 0. By [28, Theorem A], g is homothetic to S*. We
then have

4 ° 1
0= (Po.)s = [ SIVoPavol,+ 3R, [ [VoPavol,,
M M
and therefore ¢ = constant. q.e.d.

Remark. In [11], the nonnegativity of the Paneitz operator was
shown assuming Rg — ARic > 0 for A € (1,3]. The above proposition
extends this to the endpoint A = 1.
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Corollary 6.1. IfRic, >0, then P > 0, and Ker P = {constants}.

Proof. Clearly, Ric, > 0 implies that Ricy, < Ryg, so this follows
directly from Proposition 6.1. q.e.d.

Remark. The construction in [29] yields metrics with positive
Ricci curvature on the connect sums k(S? x S2), kCP?#CP?), and (k +
1)CP?#kCP?. Consequently, from Corollary 6.1, and the results in [10],
these manifolds admit metrics with () = constant.

7. Examples

The following theorem will allow us to give many examples of metrics
satisfying the conditions of Theorem 1.4.

Theorem 7.1. Let (M,g) satisfy [Qgdvoly > 0. If Yig] >
4N/3km, k < 8, then the manifold N = M#k(S' x S%) admits a metric
g satisfying (1.14). If Y[g] > 8V/3x, then the manifold N = M#1(RP*)
admits a metric g satisfying (1.14) for 1 < 9. Consequently, these man-
ifolds N admit metrics with () = constant.

Proof. From the assumption on [ Qdvol and the Chern-Gauss-
Bonnet formula, we have

(7.1) /M |W,|2dvol, < 872y (M).

From [2, Proposition 4.1], given a point p € M, and € > 0, M admits
a metric ¢’ so that ¢’ is locally conformally flat in a neighborhood of p,
and

(7.2) Yigll <e,

/|W 2dvol, — /yW\dvol
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We next put a metric on the connect sum using the technique in [24].
Since ¢’ is locally conformally flat near p, there is a conformal factor on
M — {p} which makes the metric look cylindrical near p.

For the first case, since S' x S3 is locally conformally flat, for any
p' € S x S3 there is a conformal factor on S x $3 — {p'} which makes
the metric look cylindrical near p’. Therefore one can put a metric on
N by identifying the cylindrical regions together along their boundaries.
From the construction in [24], there are sequences of locally conformally
flat metrics on k(S* x S3) whose Yamabe invariants approach o (k(S* x
53)) = o(8%) = 8671 > Y]g'], where o denotes the diffeomorphism
Yamabe invariant, so we choose a locally conformally flat metric g; on
k(S x S3) satisfying Y[g1] > 8V/67 — e. We have min{Y[g1],Y[¢']} =
Y[4'], so following the proof [24, Theorem 2|, by changing the length
of the cylindrical region, one can put a metric g on the connect sum
N = M#k(St x $3) with Y[g] > Y[¢'] — €. Clearly we also have

‘ / W, |2dvol, —/ \W§|2dvolg‘ <e
M N
which along with (7.1) implies
(7.3) / [W;5|%dvoly < 872y (M) + e.
N

We next verify that, for appropriate €, the metric g satisfies the
condition (1.14). To see this, write (Y[g])? = 48kn? + 34, with § > 0,
and noting that x(N) = x(M) — 2k we have

1 1
Q/Ndivolg—l— SV = 8nX(N) /N W 2dvoly + 2 (v[3)?

> 8r(N) — 8y (M) + S (V]g])? — Ce

1
= —16kr? + g(Y[g])2 —Ce
=0—Ce>0,

for € sufficiently small.

For the second case, since RP? is locally conformally flat, we do
exactly the same gluing as before. Again we use [2, Proposition 4.1] to
find a metric ¢’ on M satisfying (7.2). We fix the standard metric go
on RP*, which is locally conformally flat. Since Y ([¢']) > 8v/37 = Y[go]
we have min{Y[go], Y[¢']} = Y[go], so from the construction in [24], we
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can put a metric § on the connect sum N = M#I(RP*) with Y[g] >
8v/3m — €, and which also satisfies (7.3).

Write (Y[g))? = 3(647% + 6), with 6 > 0, and noting that y(N) =
x(M) —1,

/ Qv + (Y l)? = 8x°x(N) — [ [WyfPavoly + 5(V )

> 8wy (N) — 8y (M )+§(Y[g])2—06

= —8ln? + 64w + 5 — Ce > 0,
for e sufficiently small and [ < 9. q.e.d.

We next write down some specific examples of (M, g) satisfying the
assumptions of Theorem 7.1. We will use the fact that if (M, g) is a pos-
itive Einstein manifold, then [ Q,dvol; > 0 and the Yamabe invariant
is attained by g.

(1) M = S? x §% with the product metric, Y[g] = 167 > 4v/3kn for
k < 6, so we have

(7.4) N = (82 x S?)#k(S' x 8%), k <5.

(2) M = CP? with the Fubini-Study metric, Y[g] = 12v/27 (see [26]).
Since 12v/27 > 4v/3kr for k < 6, this yields the examples
(7.5) N = CP?#k(S' x §3), k <5.

(3) Again, we take M = CP?%. We have 12v/27 > 8y/37, so from the
second statement in Theorem 7.1 we have
(7.6) N = CP?*#k(RP?Y), k <38.

(4) M = CP?#ICP?, 3 <1 < 8, M admits Kéhler-Einstein metrics

satisfying Y'[g] = 4m+/2(9 — 1) (see [22], [26]). Since 4m+/2(9 — )

> 4+/37 for | < 8, we have the examples
(7.7) N = CP?#ICP?*#(S' x §3), 3<1<T.
(5) N = k(S* x S®)#I(RP?Y), 2k +1 < 9. We do not need Theo-

rem 7.1 for this example, we argue directly. By the construction
n [24], these manifolds admit locally conformally flat metrics g



152 M.J. GURSKY & J.A. VIACLOVSKY

with Y[g] = Y[RP?, go] = 837, We have x(N) = —2k — 1+ 2, so
the assumption (1.14) is that

1
0 < 8r%(—2k —1+2)+ g(Y[g])2 ~ 8% (—2k — 1+ 2) + 6477,

which is satisfied for 2k + 1 < 10.

The above examples are all summing with locally conformally flat
manifolds, but this is not necessary in our construction. We end with a
corollary, whose proof is similar to the proof of Theorem 7.1.

Corollary 7.1. Let (My,g1) and (Ms,g2) satisfy sz‘ Qg dvoly, >

0, and Y[g;] > 4v/3n. Then the manifold N = M1# M admits a metric
g satisfying (1.14). Consequently, N admits a metric with () = constant.
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