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A FULLY NONLINEAR EQUATION ON
FOUR-MANIFOLDS WITH POSITIVE SCALAR

CURVATURE

MATTHEW J. GURSKY & JEFF A. VIACLOVSKY

Abstract
We present a conformal deformation involving a fully nonlinear equation in
dimension 4, starting with a metric of positive scalar curvature. Assuming a
certain conformal invariant is positive, one may deform from positive scalar
curvature to a stronger condition involving the Ricci tensor. A special case of
this deformation provides an alternative proof to the main result in Chang,
Gursky & Yang, 2002. We also give a new conformally invariant condition
for positivity of the Paneitz operator, generalizing the results in Gursky,
1999. From the existence results in Chang & Yang, 1995, this allows us
to give many new examples of manifolds admitting metrics with constant
Q-curvature.

1. Introduction

Let (M, g) denote a closed, 4-dimensional Riemannian manifold, and
let Y [g] denote the Yamabe invariant of the conformal class [g]:

Y [g] ≡ inf
g̃∈[g]

Vol (g̃)−1/2
∫

M
Rg̃dvolg̃,(1.1)

where Rg̃ denotes the scalar curvature. Another important conformal
invariant is

F2([g]) ≡
∫

M

(
−1

2
|Ricg|2 +

1
6
R2g

)
dvolg,(1.2)
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where Ricg is the Ricci tensor. By the Chern-Gauss-Bonnet formula
([4]),

8π2χ(M) =
∫

M
|Wg|2dvolg + F2([g]).(1.3)

Thus, the conformal invariance of F2 follows from the well-known (point-
wise) conformal invariance of the Weyl tensor Wg (see [13]).

Define the tensor

At
g =

1
2

(
Ricg − t

6
Rgg

)
.(1.4)

Note that for t = 1, A1g is the classical Schouten tensor ([13]). Let
σ2(g−1At

g) denote the second elementary symmetric function of the
eigenvalues of g−1At

g, viewed as an endomorphism of the tangent bundle.
Then a simple calculation gives

F2([g]) = 4
∫

M
σ2(g−1A1g)dvolg.(1.5)

Our main result is the following:

Theorem 1.1. Let (M, g) be a closed 4-dimensional Riemannian
manifold with positive scalar curvature. If

F2([g]) +
1
6
(1− t0)(2− t0)(Y [g])2 > 0,(1.6)

for some t0 ≤ 1, then there exists a conformal metric g̃ = e−2ug with
Rg̃ > 0 and σ2(At0

g̃ ) > 0 pointwise. This implies the pointwise inequali-
ties

(t0 − 1)Rg̃ g̃ < 2Ricg̃ < (2− t0)Rg̃ g̃.(1.7)

As applications of Theorem 1.1, we consider two different values of
t0. When t0 = 1, we obtain a different proof of the following result in
[8]:

Corollary 1.1. Let (M, g) be a closed 4-dimensional Riemannian
manifold with positive scalar curvature. If F2([g]) > 0, then there ex-
ists a conformal metric g̃ = e−2ug with Rg̃ > 0 and σ2(g̃−1A1g̃) > 0
pointwise. In particular, the Ricci curvature of g̃ satisfies

0 < 2Ricg̃ < Rg̃ g̃.
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The proof in [8] involved regularization by a fourth-order equation
and relied on some delicate integral estimates. By contrast, the proof
of Theorem 1.1 seems more direct, and depends on general a priori
estimates for fully nonlinear equations developed in [30], [20], [27], and
[23].

Our second application is to the spectral properties of a conformally
invariant differential operator known as the Paneitz operator. Let δ
denote the L2-adjoint of the exterior derivative d; then the Paneitz
operator is defined by

Pgφ = ∆2φ+ δ
(2
3
Rgg − 2Ricg

)
dφ.(1.8)

The Paneitz operator is conformally invariant, in the sense that if g̃ =
e−2ug, then

Pg̃ = e4uPg.(1.9)

Since the volume form of the conformal metric g̃ is dvolg̃ = e−4udvolg,
an immediate consequence of (1.9) is the conformal invariance of the
Dirichlet energy

〈Pg̃φ, φ〉L2(M,g̃) = 〈Pgφ, φ〉L2(M,g).

In particular, positivity of the Paneitz operator is a conformally invari-
ant property, and clearly the kernel is invariant as well.

To appreciate the geometric significance of the Paneitz operator we
need to define the associated Q-curvature, introduced by Branson:

Qg = − 1
12

∆Rg + 2σ2(g−1A1g).(1.10)

Under a conformal change of metric g̃ = e−2ug, the Q-curvature trans-
forms according to the equation

−Pu+ 2Qg = 2Qg̃e
−4u,(1.11)

see, for example, [5]. Note that∫
M
Qgdvolg =

1
2
F2([g]),(1.12)

so the integral of the Q-curvature is conformally invariant.
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The Q-curvature and Paneitz operator have become important ob-
jects of study in the geometry of four-manifolds, and play a role in such
diverse topics as Moser-Trudinger inequalities ([3], [6]), compactifica-
tion of complete conformally flat manifolds ([9]), twistor theory ([11]),
gauge choices for Maxwell’s equations ([12]), and most recently in the
study of conformally compact AHE manifolds ([15], [18]).

Our interest here is in the spectral properties of the Paneitz oper-
ator and the related question of the existence of metrics with constant
Q-curvature. The most general work on this subject was done by Chang
and Yang [10], who studied the problem of constructing conformal met-
rics with constant Q-curvature by variational methods. They considered
the functional

F [φ] = 〈Pgφ, φ〉 − 4
∫

M
Qφdvol−

(∫
M
Qdvol

)
log
∫

M
e−4φdvol,

(1.13)

and analyzed the behavior of a minimizing sequence. Of course, it is not
clear a priori that F is even bounded from below. Indeed, if the Paneitz
operator has a negative eigenvalue and the conformal invariant (1.12)
is positive, then Chang and Yang showed that inf F = −∞ (see [10], p.
177). For example, take a compact surface Σ of curvature −1 with first
eigenvalue λ1(−∆) << 1. Then the product manifold M = Σ × Σ will
have λ1(P ) < 0 and

∫
Qdvol > 0.

Chang and Yang also pointed out the connection between the con-
formal invariant (1.12) and the best constant in the inequality of Adams
[1], another key point for establishing the W 2,2 compactness of a mini-
mizing sequence. Combining these observations, they proved:

Theorem 1.2 ([10]). Let (M, g) be a compact 4-manifold. Assume:

(i) The Paneitz operator Pg is nonnegative with KerP = {constants}.

(ii) The conformal invariant (1.12) is strictly less than the value at-
tained by the round sphere.

Then there exists a minimizer of F , which satisfies (1.11) with Qg̃ =
constant.

Subsequently, the first author proved that any four-manifold of pos-
itive scalar curvature which is not conformally equivalent to the sphere
already satisfies the second assumption of Chang-Yang. In addition:
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Theorem 1.3 ([21]). Let (M, g) be a compact 4-manifold. If the
scalar curvature of g is nonnegative and

∫
Qdvol ≥ 0, then the Paneitz

operator is positive and KerP = {constants}.
Because of the example of Chang-Yang, it is clear that one cannot

relax the condition on the scalar curvature in the above theorem. On
the other hand, the positivity of the conformal invariant (1.12) is a
rather strong assumption. For example, if the scalar curvature is strictly
positive, then the positivity of (1.12) implies the vanishing of the first
Betti number of M (see [22]). Thus, for example, the manifold N#(S1×
S3) can not admit a metric of positive scalar curvature with

∫
Qdvol >

0.
It is interesting to note that the positivity of the Paneitz operator

was studied by Eastwood and Singer in [11] for reasons motivated by
twistor theory. They constructed metrics on k(S3×S1) for all k > 0 with
P ≥ 0 and KerP = {constants}. Since these manifolds have

∫
Qdvol <

0, the Eastwood-Singer construction is in some respects complementary
to the result of [21].

By combining Theorem 1.1 with t0 = 0, and an integration by parts
argument, we obtain a new criterion for the positivity of P :

Theorem 1.4. Let (M, g) be a closed 4-dimensional Riemannian
manifold with positive scalar curvature. If∫

Qgdvolg +
1
6
(Y [g])2 > 0,(1.14)

then the Paneitz operator is nonnegative, and KerP = {constants}.
Therefore, by the results in [10], there exists a conformal metric g̃ =
e−2ug with Qg̃ = constant.

Since Theorem 1.4 allows the integral of the Q-curvature to be neg-
ative, we are able to use surgery techniques to construct many new
examples of manifolds which admit metrics with constant Q. For ex-
ample, we will show that

N = (S2 × S2)#k(S1 × S3), k ≤ 5,

N = CP
2#k(S1 × S3), k ≤ 5,

N = CP
2#k(RP

4), k ≤ 8,

N = k(S1 × S3)#l(RP
4), 2k + l ≤ 9,

all admit metrics with constant Q. See Section 7 for additional exam-
ples.
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For the proof of Theorem 1.1, we will be concerned with the following
equation for a conformal metric g̃ = e−2ug:

σ
1/2
2 (g−1At

g̃) = f(x)e2u,(1.15)

where f(x) > 0. We have the following formula for the transformation
of At under a conformal change of metric g̃ = e−2ug:

At
g̃ = At

g +∇2u+
1− t

2
(∆u)g + du⊗ du− 2− t

2
|∇u|2g.(1.16)

Since At = A1 + 1−t
2 tr(A1)g, this formula follows easily from the stan-

dard formula for the transformation of the Schouten tensor (see [30]):

A1g̃ = A1g +∇2u+ du⊗ du− 1
2
|∇u|2g.(1.17)

Using (1.16), we may write (1.15) with respect to the background metric
g

(1.18) σ
1/2
2

(
g−1
(
∇2u+

1− t

2
(∆u)g

− 2− t

2
|∇u|2g + du⊗ du+At

g

))
= f(x)e2u.

The choice of the right-hand side in (1.18) is quite flexible; the key
requirement is simply that the exponent is a positive multiple of u. For
negative exponents we lose the invertibility of the linearized equation
and some key a priori estimates; see the proofs of Propositions 2.2
and 3.1.

Equation (1.18) was considered in our earlier work ([23]) in the con-
text of negative curvature. Li and Li ([27]) used a similar path to
prove existence of solutions of the conformally invariant equation in-
volving more general symmetric functions of the eigenvalues, assuming
the manifold is locally conformally flat. After completing this paper,
we also received the preprint of Guan, Lin and Wang ([19]), where they
used a similar deformation technique to obtain various results in the
locally conformally flat setting.

We will use the continuity method: the assumption of positive scalar
curvature will allow us to start at some t = δ very negative. We will
then use the conformally invariant assumption (1.6) in Section 3, to-
gether with the Harnack inequality of [20] and [27] in Section 4, to
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prove compactness of the space of solutions. Existence of a solution at
time t0 and verification of the inequalities (1.7) will be proved in Sec-
tion 5, thus completing the proof of Theorem 1.1. Theorem 1.4 will be
proved in Section 6, and in Section 7 we give many new examples of
manifolds admitting metrics with constant Q-curvature.

2. Ellipticity

In this section we will discuss the ellipticity properties of Equation
(1.18).

Definition 1. Let (λ1, . . . , λ4) ∈ R4. We view the second elemen-
tary symmetric function as a function on R4:

σ2(λ1, . . . , λ4) =
∑
i<j

λiλj ,(2.1)

and we define

Γ+2 = {σ2 > 0} ∩ {σ1 > 0},(2.2)

where σ1 = λ1 + · · ·+ λ4 denotes the trace.

For a symmetric linear transformation A : V → V , where V is
an n-dimensional inner product space, the notation A ∈ Γ+2 will mean
that the eigenvalues of A lie in the corresponding set. We note that
this notation also makes sense for a symmetric tensor on a Riemannian
manifold. If A ∈ Γ+2 , let σ1/22 (A) = {σ2(A)}1/2.

Definition 2. Let A : V → V be a symmetric linear transforma-
tion, where V is an n-dimensional inner product space. The first Newton
transformation associated with A is

T1(A) = σ1(A) · I −A.(2.3)

Also, for t ∈ R we define the linear transformation

Lt(A) = T1(A) +
1− t

2
σ1(T1(A)) · I.(2.4)

We note that if As : R→ Hom(V, V ), then

d

ds
σ2(As) =

∑
i,j

T1(As)ij
d

ds
(As)ij ,(2.5)

that is, the first Newton transformation is what arises from differentia-
tion of σ2.
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Proposition 2.1.

(i) The set Γ+2 is an open convex cone with vertex at the origin.

(ii) If the eigenvalues of A are in Γ+2 , then T1(A) is positive definite.
Consequently, for t ≤ 1, Lt(A) is also positive definite.

(iii) For symmetric linear transformations A ∈ Γ+2 , B ∈ Γ+2 , and s ∈
[0, 1], we have the following inequality

{σ2((1− s)A+ sB)}1/2 ≥ (1− s){σ2(A)}1/2 + s{σ2(B)}1/2.(2.6)

Proof. The proof of this proposition is standard, and may be found
in [7] and [16]. q.e.d.

For u ∈ C2(M), we define

At
u = At

g +∇2u+
1− t

2
(∆u)g + du⊗ du− 2− t

2
|∇u|2g.(2.7)

Proposition 2.2. Let u ∈ C2(M) be a solution of

σ
1/2
2 (g−1At

u) = f(x)e2u,(2.8)

for some t ≤ 1 with At
u ∈ Γ+2 . Then the linearized operator at u,

Lt : C2,α(M) → Cα(M), is invertible (0 < α < 1).

Proof. We define

Ft[x, u,∇u,∇2u] = σ2(g−1At
u)− f(x)2e4u,

so that solutions of (2.8) are zeroes of Ft. We then suppose that u ∈
C2(M) satisfies Ft[x, u,∇u,∇2u] = 0, with At

u ∈ Γ+2 . Define us =
u+ sϕ, then

Lt(ϕ) =
d

ds
Ft[x, us,∇us,∇2us]

∣∣∣
s=0

(2.9)

=
d

ds

(
σ2(g−1At

us
)
)∣∣∣

s=0
− d

ds

(
f2e4us

) ∣∣∣
s=0

.

From (2.5), we have (using the summation convention)

d

ds

(
σ2(g−1At

u)
)∣∣∣

s=0
= T1(g−1At

u)ij
d

ds

(
(g−1At

us
)ij
)∣∣∣

s=0
.
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We compute

d

ds

(
(g−1At

us
)
)∣∣∣

s=0

= g−1
(
∇2ϕ+

1− t

2
(∆ϕ)g − (2− t)〈du, dϕ〉g + 2du⊗ dϕ

)
.

Therefore,

d

ds

(
σ2(g−1At

us
)
)∣∣∣

s=0
= T1(g−1At

u)ij
{
g−1
(
∇2ϕ+ (1− t)(∆ϕ)(g/2)

(2.10)

− (2− t)〈du, dϕ〉g + 2du⊗ dϕ
)}

ij
.

For the second term on the right-hand side of (2.9) we have

d

ds

(
f2e4us

) ∣∣∣
s=0

= 4f2e4uϕ.(2.11)

Combining (2.10) and (2.11), we conclude

Lt(ϕ) = T1(g−1At
u)ij{g−1(∇2ϕ+ (1− t)(∆ϕ)(g/2))}ij − 4f2e4uϕ+ · · ·

(2.12)

where + · · · denotes additional terms which are linear in ∇ϕ. Using the
definition of Lt in (2.4), we can rewrite the leading term of (2.12) and
obtain

Lt(ϕ) = Lt(g−1At
u)ij(g

−1∇2ϕ)ij − 4f2e4uϕ+ · · ·(2.13)

For t ≤ 1, Proposition 2.1 implies that Lt(g−1At
u) is positive definite,

so Lt is elliptic. Since the coefficient of ϕ in the zeroth-order term of
(2.13) is strictly negative, the lineariztion is furthermore invertible on
the stated Hölder spaces (see [17]). q.e.d.

3. C0 estimate

Throughout the sequel, (M, g) will be a closed 4-dimensional Rie-
mannian manifold with positive scalar curvature. Since Rg > 0, there
exists δ > −∞ so that Aδ

g is positive definite. For t ∈ [δ, 1], consider the
path of equations

σ
1/2
2 (g−1At

ut
) = f(x)e2ut ,(3.1)

where f(x) = σ
1/2
2 (g−1Aδ

g) > 0. Note that u ≡ 0 is a solution of (3.1)
for t = δ.
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Proposition 3.1. Let ut ∈ C2(M) be a solution of (3.1) for some
δ ≤ t ≤ 1. Then ut ≤ δ, where δ depends only upon g.

Proof. From Newton’s inequality 4√
6
σ
1/2
2 ≤ σ1, so

4√
6
f(x)e2ut ≤ σ1(g−1At

ut
).(3.2)

Let p be a maximum of ut, then the gradient terms vanish at p, and
∆ut ≤ 0, so by (1.16)

4√
6
f(p)e2ut(p) ≤ σ1(g−1At

ut
)(p)

= σ1(g−1At
g) + (3− 2t)∆ut

≤ σ1(g−1At
g).

Since t ≥ δ, this implies ut ≤ δ. q.e.d.

Proposition 3.2. Assume that for some δ ≤ t ≤ 1,

F2([g]) +
1
6
(1− t)(2− t)(Y [g])2 = λt > 0.(3.3)

If ut ∈ C2(M) is a solution of (3.1) satisfying ‖∇ut‖L∞ < C1, then
ut > δ, where δ depends only upon g, C1, and log λt.

Proof. Using Lemma 24 in [30], we have

σ2(At) = σ2

(
A1 +

1− t

2
σ1(A1)g

)
= σ2(A1) + 3

1− t

2
σ1(A1)2 + 6

(1− t

2
σ1(A1)

)2
= σ2(A1) +

3
2
(1− t)(2− t)σ1(A1)2.

Letting g̃ = e−2utg,

e4utf2 = σ2(g−1At
ut

) = σ2(g−1A1ut
) +

3
2
(1− t)(2− t)

(
σ1(g−1A1ut

)
)2

= e−4ut

(
σ2(g̃−1A1ut

) +
1
24

(1− t)(2− t)R2g̃
)
.
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Integrating this, we obtain

C ′
∫

M
e4utdvolg

≥
∫

M
f2e4utdvolg

=
∫

M
σ2(g̃−1A1ut

)e−4utdvolg +
1
24

(1− t)(2− t)
∫

M
R2g̃e

−4utdvolg

=
∫

M
σ2(g̃−1A1g̃)dvolg̃ +

1
24

(1− t)(2− t)
∫

M
R2g̃dvolg̃,

where C ′ > 0 is chosen so that f2 ≤ C ′.

Lemma 3.1. For any metric g′ ∈ [g], we have∫
M
R2g′dvolg′ ≥ (Y [g])2.(3.4)

Proof. From Hölder’s inequality,∫
M
Rg′dvolg′ ≤

{∫
M
R2g′dvolg′

}1/2
· {Vol (g′)

}1/2
.(3.5)

Since g has positive scalar curvature, Y [g] > 0, so the left-hand side of
(3.5) must be positive. We then obtain

(Y [g])2 ≤
(
Vol (g′)−1/2

∫
M
Rg′dvolg′

)2
≤
∫

M
R2g′dvolg′ .

q.e.d.

Using the lemma, and the conformal invariance of F2, we obtain

C ′
∫

M
e4utdvolg ≥ 1

4
F2([g]) +

1
24

(1− t)(2− t)(Y [g])2 =
1
4
λt > 0.

(3.6)

This implies

maxut ≥ 1
4
log λt − C(g).(3.7)

The assumption |∇ut| < C1 implies the Harnack inequality

maxut ≤ minut + C(C1, g),(3.8)
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by simply integrating along a geodesic connecting points at which ut at-
tains its maximum and minimum. Combining (3.7) and (3.8) we obtain

minut ≥ 1
4
log λt − C.

q.e.d.

4. Harnack inequality

We next have the following C1 estimate for solutions of Equation
(1.18).

Proposition 4.1. Let ut be a C3 solution of (3.1) for some δ ≤
t ≤ 1, satisfying ut < δ. Then ‖∇ut‖L∞ < C1, where C1 depends only
upon δ and g.

Remark. A Harnack inequality was proved for the conformally
invariant equation for t = 1 in [20], and then extended to t < 1 in [27].
More specifically, in [27] was considered the equation

σ
1/k
k (sA1 + (1− s)σ1(A1)g) = f(x)e−2u.(4.1)

The left-hand side is just a reparametrization of At, but (3.1) has a
different right-hand side, so the Harnack inequality now depends on
the sup. The differences are minor, but for convenience, we present an
outline of the proof here, and also provide a simple direct proof which
works for t < 1.

Proof. Consider the function h = |∇u|2 (we will omit the subscript
on ut). Since M is compact, and h is continuous, we suppose the maxi-
mum of h occurs and a point p ∈ N . Take a normal coordinate system
(x1, . . . , xn) at p, then gij(p) = δij , and Γi

jk(p) = 0, where g = gijdx
idxj ,

and Γi
jk is the Christoffel symbol (see [4]).

Locally, we may write h as

h = glmulum.(4.2)

In a neighborhood of p, differentiating h in the xi direction we have

∂ih = hi = ∂i(glmulum) = ∂i(glm)ulum + 2glm∂i(ul)um.(4.3)
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Since in a normal coordinate system, the first derivatives of the metric
vanish at p, and since p is a maximum for h, evaluating (4.3) at p, we
have

uliul = 0.(4.4)

Next we differentiate (4.3) in the xj direction. Since p is a maximum,
∂j∂ih = hij is negative semidefinite, and we get (at p)

0 � hij =
1
2
∂j∂ig

lmulum + ulijul + uliulj .(4.5)

We recall from Section 2 that

Lt
ij = Tij +

1− t

2

∑
l

Tllδij ,(4.6)

is positive definite, where Tij means (T1(g−1At
u))ij . We sum with (4.5)

with Lt
ij to obtain the inequality

0 ≥ 1
2
Lt

ij∂i∂jg
lmulum + Lt

ijulijul + Lt
ijuliulj .(4.7)

We next differentiate Equation (3.1) in order to replace the ulij term
with lower order terms. With respect to our local coordinate system,
from (2.7) we have

(At
u)ij = (At

g)ij + uij − urΓr
ij +

1− t

2

∑
k

(ukk − urΓr
kk)gij + uiuj(4.8)

− 2− t

2
(gr1r2ur1ur2)gij .

At the point p, this simplifies to

(At
u)ij = (At

g)ij + uij +
1− t

2

∑
k

(ukk)gij + uiuj − 2− t

2
(|∇u|2)δij .

(4.9)

Next we take m with 1 ≤ m ≤ n, and differentiate (3.1) with respect
to xm in our local coordinate system:

∂m

{
σ2
(
glj(At

u)ij
)}

= ∂m(f(x)2e4u).(4.10)
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Differentiating and evaluating at p, we obtain

Tij

(
∂m(At

g)ij + uijm − ur∂mΓr
ij(4.11)

+
1− t

2

∑
k

(ukkm − ur∂mΓr
kk)δij + 2uimuj

)
= (∂mf

2)e4u + 4f2e4uum.

Note that the third order terms in the above expression are

Tij

(
uijm +

1− t

2

∑
k

ukkmδij

)
= Lt

ijuijm.

Next we sum (4.11) with um, using (4.4) we have the following formula

Lt
ijumuijm + Tij

(
um∂m(At

g)ij(4.12)

− umur∂mΓr
ij −

1− t

2

∑
k

(urum∂mΓr
kk)δij

)
= um(∂mf

2)e4u + 4f2e4u|∇u|2.
Substituting (4.12) into (4.7), we arrive at the inequality

0 ≥ 1
2
Lt

ij∂i∂jg
lmulum + Tij

(
− um∂m(At

g)ij

+ umur∂mΓr
ij +

1− t

2

∑
k

(urum∂mΓr
kk)δij

)
+ um(∂mf

2)e4u + Lt
ijuliulj .

Using (4.6) and Lemma 2 in [31], we obtain

0 ≥ Tij

(1− t

2

∑
k

Rklkmulumδij +Riljmulum − um∂m(At
g)ij
)

(4.13)

+ um(∂mf
2)e4u + Tijuliulj +

1− t

2

∑
l

Tlluijuij ,

where Riljm are the components of the Riemann curvature tensor of g.

Lemma 4.1. There exists a constant β > 0 such that for t ∈ [δ, 1],

Tijuliulj +
1− t

2

∑
l

Tlluijuij ≥ β
∑

l

Tll|∇u|4.(4.14)
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Remark. This was proved in [27], using the result in [20].

Using the lemma, we have

0 ≥ Tij

(
1− t

2

∑
k

Rklkmulumδij +Riljmulum − um∂m(At
g)ij

)
(4.15)

+ um(∂mf
2)e4u + β

∑
l

Tll|∇u|4.

Since we are assuming u is bounded above, the |∇u|4 term dominates,
and the proof proceeds as in [20] or [27]. q.e.d.

Remark. For convenience, we would like to present here a simpli-
fied proof of Lemma 4.1 which works for t < 1. Although the argument
breaks down as t → 1, it covers the case t0 = 0, and therefore suffices
for proving Theorem 1.4.

To begin, we claim that if β′
t > 0 is sufficiently small, then for at

least one i0, ui0i0 ≥ β′
t|∇u|2. If not, then uii < β′

t|∇u|2 for i = 1 . . . 4.
Since Γ2 ⊂ {σ1 > 0},

∆u+ 2(1− t)(∆u)− 2(2− t)|∇u|2 + |∇u|2 + σ1(At
g) > 0.

Without loss of generality, we may assume that σ1(At
g) ≤ ε|∇u|2, we

then have(
1 + 2(1− t)

)
∆u+

(
1− 2(2− t)

)
|∇u|2 + ε|∇u|2 > 0.

From the assumption, ∆u =
∑

uii < 4β′
t|∇u|2, so

4β′
t

(
1 + 2(1− t)

)
|∇u|2 +

(
1− 2(2− t)

)
|∇u|2 + ε|∇u|2 > 0,

which is a contradiction for ε and β′
t sufficiently small. We then have

Tijuliulj +
1− t

2

∑
l

Tlluijuij ≥ 1− t

2

∑
l

Tllu
2
i0i0(4.16)

≥ 1− t

2
(β′

t)
2
∑

l

Tll|∇u|4,

so choose βt = 1−t
2 (β′

t)
2. This completes the proof.
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5. Proof of Theorem 1.1

Proposition 5.1. Let ut be a C4 solution of (3.1) for some δ ≤
t ≤ 1 satisfying δ < ut < δ, and ‖∇ut‖L∞ < C1. Then for 0 < α < 1,
‖ut‖C2,α ≤ C2, where C2 depends only upon δ, δ, C1, and g.

Proof. The C2 estimate follows from the global estimates in [23], or
the local estimates [20] and [27]. We remark that the main fact used
in deriving these estimates is that σ

1/2
2 (At) is a concave function of

the second derivative variables, which follows easily from the inequality
(2.6). Since f(x) > 0, the C2 estimate implies uniform ellipticity, and
the C2,α estimate then follows from the work of [25] and [14] on concave,
uniformly elliptic equations. q.e.d.

To finish the proof of Theorem 1.1, we use the continuity method.
Recall that we are considering the 1-parameter family of equations, for
t ∈ [δ, t0],

σ
1/2
2 (g−1At

ut
) = f(x)e2ut ,(5.1)

with f(x) = σ
1/2
2 (g−1Aδ

g) > 0, and δ was chosen so that Aδ
g is positive

definite. We define

S = {t ∈ [δ, t0] | ∃ a solution ut ∈ C2,α(M) of (5.1) with At
ut

∈ Γ+2 }.
The function f(x) was chosen so that u ≡ 0 is a solution at t = δ. Since
Aδ

g is positive definite, and the positive cone is clearly contained in Γ+2 ,
S is nonempty. Let t ∈ S, and ut be any solution. From Proposition 2.2,
the linearized operator at ut, Lt : C2,α(M) → Cα(M), is invertible. The
implicit function theorem (see [17]) implies that S is open. Note that
since f ∈ C∞(M), it follows from classical elliptic regularity theory
that ut ∈ C∞(M). Proposition 3.1 implies a uniform upper bound on
solutions ut (independent of t). We may then apply Proposition 4.1
to obtain a uniform gradient bound, and Lemma 3.2 then implies a
uniform lower bound on ut. Proposition 5.1 then implies that S is
closed, therefore S = [δ, t0]. The metric g̃ = e−2ut0g then satisfies
σ2(At0

g̃ ) > 0 and Rg̃ > 0.
We next verify the inequalities (1.7). We decompose At into its

trace-free and pure-trace components,

At = At − 1
n
σ1(At)g +

1
n
σ1(At)g(5.2)

≡
◦
At +

1
n
σ1(At)g.
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We now associate to At the symmetric transformation Ât, defined by

Ât ≡ −
◦
At +

1
n
σ1(At)g.(5.3)

That is, Ât is the (unique) symmetric transformation which has the same
pure-trace component as A, but the opposite trace-free component.

Lemma 5.1. The tensors Ât and At satisfy the equalities

σ1(Ât) = σ1(At),(5.4)

σ2(Ât) = σ2(At).(5.5)

Proof. The proof of (5.4) is immediate from the definition of Ât. To
prove (5.5), we use the identity

σ2(At) = −1
2
|At|2 +

1
2
σ1(At)2

= −1
2
|
◦
At +

1
n
σ1(At)g|2 +

1
2
σ1(At)2.

Since the decomposition (5.2) is orthogonal with respect to the norm
| · |2, we conclude

σ2(At) = −1
2
| − Ât|2 +

1
2
σ1(At)2 = σ2(Ât).

q.e.d.

Combining Lemma 5.1 and Proposition 2.1 we have:

Proposition 5.2. If the eigenvalues of At are in Γ+2 , then

−At + σ1(At)g > 0, and(5.6)

At +
n− 2
n

σ1(At)g > 0.(5.7)

Proof. The tensor in (5.6) is simply the first Newton transformation
of At, which is positive definite by Proposition 2.1. By Lemma 5.1,
σ2(Ât) > 0 and σ1(Ât) > 0. Thus, the eigenvalues of Ât are also in
Γ+2 . By Proposition 2.1, the first Newton tranform T1(Ât) is positive
definite. By definition,

T1(Ât) = −Ât + σ1(Ât)g

= −
(
−

◦
At +

1
n
σ1(At)g

)
+ σ1(At)g

= At +
(n− 2)

n
σ1(At)g. q.e.d.
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When expressed in terms of Ric and n = 4, (5.6) and (5.7) are
exactly (1.7).

6. Proof of Theorem 1.4

The assumption (1.14) corresponds to t0 = 0 in Theorem 1.1. From
(1.7) we find a conformal metric (which for simplicity, we again denote
by g) with Ric g < Rgg. Theorem 1.4 then follows from:

Proposition 6.1. If Ric g ≤ Rgg, then P ≥ 0, and KerP =
{constants}.

Proof. We again recall that the Paneitz operator is defined by

Pφ = ∆2φ+ δ
(2
3
Rgg − 2Ric g

)
dφ.(6.1)

Integrating by parts,

〈Pφ, φ〉L2 =
∫

M

(
(∆φ)2 +

2
3
Rg|∇φ|2 − 2Ric g(∇φ,∇φ)

)
dvolg.(6.2)

From the Bochner formula,

0 =
∫ (|∇2φ|2 + Ric g(∇φ,∇φ)− (∆φ)2

)
dvolg.(6.3)

Substituting (6.3) into (6.2), we have

〈Pφ, φ〉L2

=
∫

M

(
−1

3
(∆φ)2 +

4
3
(∆φ)2 +

2
3
Rg|∇φ|2 − 2Ric g(∇φ,∇φ)

)
dvolg

=
∫

M

(
−1

3
(∆φ)2 +

4
3
|∇2φ|2 +

2
3
Rg|∇φ|2 − 2

3
Ric g(∇φ,∇φ)

)
dvolg

=
∫

M

(
4
3
|
◦
∇2φ|2 +

2
3
(Rgg − Ric g)(∇φ,∇φ)

)
dvolg

≥
∫

M

4
3
|
◦
∇2φ|2dvolg,

where
◦
∇2φ = ∇2φ − (1/4)(∆φ)g. Consequently, P ≥ 0. Assume by

contradiction that Pφ = 0, and φ is not constant. From the above, we
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conclude that
◦
∇2φ ≡ 0. By [28, Theorem A], g is homothetic to S4. We

then have

0 = 〈Pφ, φ〉L2 =
∫

M

4
3
|
◦
∇2φ|2dvolg +

1
2
Rg

∫
M

|∇φ|2dvolg,

and therefore φ = constant. q.e.d.

Remark. In [11], the nonnegativity of the Paneitz operator was
shown assuming Rg − λRic ≥ 0 for λ ∈ (1, 3]. The above proposition
extends this to the endpoint λ = 1.

Corollary 6.1. If Ric g ≥ 0, then P ≥ 0, and KerP = {constants}.
Proof. Clearly, Ric g ≥ 0 implies that Ric g ≤ Rgg, so this follows

directly from Proposition 6.1. q.e.d.

Remark. The construction in [29] yields metrics with positive
Ricci curvature on the connect sums k(S2×S2), kCP

2#CP
2), and (k+

l)CP
2#kCP

2. Consequently, from Corollary 6.1, and the results in [10],
these manifolds admit metrics with Q = constant.

7. Examples

The following theorem will allow us to give many examples of metrics
satisfying the conditions of Theorem 1.4.

Theorem 7.1. Let (M, g) satisfy
∫
Qgdvolg ≥ 0. If Y [g] >

4
√

3kπ, k < 8, then the manifold N = M#k(S1 × S3) admits a metric
g̃ satisfying (1.14). If Y [g] > 8

√
3π, then the manifold N = M#l(RP

4)
admits a metric g̃ satisfying (1.14) for l < 9. Consequently, these man-
ifolds N admit metrics with Q = constant.

Proof. From the assumption on
∫
Qdvol and the Chern-Gauss-

Bonnet formula, we have∫
M

|Wg|2dvolg ≤ 8π2χ(M).(7.1)

From [2, Proposition 4.1], given a point p ∈ M , and ε > 0, M admits
a metric g′ so that g′ is locally conformally flat in a neighborhood of p,
and

|Y [g′]− Y [g]| < ε,(7.2) ∣∣∣ ∫
M

|Wg|2dvolg −
∫

M
|Wg′ |2dvolg′

∣∣∣ < ε.
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We next put a metric on the connect sum using the technique in [24].
Since g′ is locally conformally flat near p, there is a conformal factor on
M − {p} which makes the metric look cylindrical near p.

For the first case, since S1 × S3 is locally conformally flat, for any
p′ ∈ S1 × S3 there is a conformal factor on S1 × S3 − {p′} which makes
the metric look cylindrical near p′. Therefore one can put a metric on
N by identifying the cylindrical regions together along their boundaries.
From the construction in [24], there are sequences of locally conformally
flat metrics on k(S1×S3) whose Yamabe invariants approach σ(k(S1×
S3)) = σ(S4) = 8

√
6π > Y [g′], where σ denotes the diffeomorphism

Yamabe invariant, so we choose a locally conformally flat metric g1 on
k(S1 × S3) satisfying Y [g1] ≥ 8

√
6π − ε. We have min{Y [g1], Y [g′]} =

Y [g′], so following the proof [24, Theorem 2], by changing the length
of the cylindrical region, one can put a metric g̃ on the connect sum
N = M#k(S1 × S3) with Y [g̃] > Y [g′]− ε. Clearly we also have∣∣∣ ∫

M
|Wg|2dvolg −

∫
N
|Wg̃|2dvolg̃

∣∣∣ < ε,

which along with (7.1) implies∫
N
|Wg̃|2dvolg̃ ≤ 8π2χ(M) + ε.(7.3)

We next verify that, for appropriate ε, the metric g̃ satisfies the
condition (1.14). To see this, write (Y [g])2 = 48kπ2 + 3δ, with δ > 0,
and noting that χ(N) = χ(M)− 2k we have

2
∫

N
Qg̃dvolg̃ +

1
3
(Y [g̃])2 = 8π2χ(N)−

∫
N
|Wg̃|2dvolg̃ +

1
3
(Y [g̃])2

≥ 8π2χ(N)− 8π2χ(M) +
1
3
(Y [g])2 − Cε

= −16kπ2 +
1
3
(Y [g])2 − Cε

= δ − Cε > 0,

for ε sufficiently small.
For the second case, since RP

4 is locally conformally flat, we do
exactly the same gluing as before. Again we use [2, Proposition 4.1] to
find a metric g′ on M satisfying (7.2). We fix the standard metric g0
on RP

4, which is locally conformally flat. Since Y ([g′]) > 8
√

3π = Y [g0]
we have min{Y [g0], Y [g′]} = Y [g0], so from the construction in [24], we
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can put a metric g̃ on the connect sum N = M#l(RP
4) with Y [g̃] >

8
√

3π − ε, and which also satisfies (7.3).
Write (Y [g])2 = 3(64π2 + δ), with δ > 0, and noting that χ(N) =

χ(M)− l,

2
∫

N
Qg̃dvolg̃ +

1
3
(Y [g̃])2 = 8π2χ(N)−

∫
N
|Wg̃|2dvolg̃ +

1
3
(Y [g̃])2

≥ 8π2χ(N)− 8π2χ(M) +
1
3
(Y [g])2 − Cε

= −8lπ2 + 64π2 + δ − Cε > 0,

for ε sufficiently small and l < 9. q.e.d.

We next write down some specific examples of (M, g) satisfying the
assumptions of Theorem 7.1. We will use the fact that if (M, g) is a pos-
itive Einstein manifold, then

∫
Qgdvolg > 0 and the Yamabe invariant

is attained by g.

(1) M = S2 × S2 with the product metric, Y [g] = 16π > 4
√

3kπ for
k < 6, so we have

N = (S2 × S2)#k(S1 × S3), k ≤ 5.(7.4)

(2) M = CP
2 with the Fubini-Study metric, Y [g] = 12

√
2π (see [26]).

Since 12
√

2π > 4
√

3kπ for k < 6, this yields the examples

N = CP
2#k(S1 × S3), k ≤ 5.(7.5)

(3) Again, we take M = CP
2. We have 12

√
2π > 8

√
3π, so from the

second statement in Theorem 7.1 we have

N = CP
2#k(RP

4), k ≤ 8.(7.6)

(4) M = CP
2#lCP

2, 3 ≤ l ≤ 8, M admits Kähler-Einstein metrics
satisfying Y [g] = 4π

√
2(9− l) (see [22], [26]). Since 4π

√
2(9− l)

> 4
√

3π for l < 8, we have the examples

N = CP
2#lCP

2#(S1 × S3), 3 ≤ l ≤ 7.(7.7)

(5) N = k(S1 × S3)#l(RP
4), 2k + l ≤ 9. We do not need Theo-

rem 7.1 for this example, we argue directly. By the construction
in [24], these manifolds admit locally conformally flat metrics g̃
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with Y [g̃] ≈ Y [RP
4, g0] = 8

√
3π, We have χ(N) = −2k − l+ 2, so

the assumption (1.14) is that

0 < 8π2(−2k − l + 2) +
1
3
(Y [g])2 ≈ 8π2(−2k − l + 2) + 64π2,

which is satisfied for 2k + l < 10.

The above examples are all summing with locally conformally flat
manifolds, but this is not necessary in our construction. We end with a
corollary, whose proof is similar to the proof of Theorem 7.1.

Corollary 7.1. Let (M1, g1) and (M2, g2) satisfy
∫
Mi

Qgidvolgi ≥
0, and Y [gi] > 4

√
3π. Then the manifold N = M1#M2 admits a metric

g̃ satisfying (1.14). Consequently, N admits a metric with Q = constant.
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[16] L. Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959)
957–965, MR 22 #4809, Zbl 0090.01603.

[17] D. Gilbarg & N.S. Trudinger, Elliptic partial differential equations of second order,
Second edition, Springer-Verlag, Berlin, 1983, MR 86c:35035, Zbl 0562.35001.

[18] C.R. Graham & M. Zworski, Scattering matrix in conformal geometry, Séminaire:
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